{"step":"Obtain genome annotation","degree":1,"step_ID":"step1"}
{"step":"Identify candidate metabolic functions","degree":2,"step_ID":"step2"}
{"step":"Identify candidate metabolic reactions","degree":2,"step_ID":"step3"}
{"step":"Assemble draft reconstruction","degree":5,"step_ID":"step4"}
{"step":"Use the phylogenetically close organisms","degree":3,"step_ID":"step5"}
{"step":"Collect the experimental data","degree":2,"step_ID":"step6"}
{"step":"Determine the substrates and cofactors for usage","degree":3,"step_ID":"step7"}
{"step":"Determine the charged molecular formula","degree":1,"step_ID":"step9"}
{"step":"Determine reaction directionality","degree":4,"step_ID":"step11"}
{"step":"Add the cellular compartments information","degree":1,"step_ID":"step12"}
{"step":"Verify gene-protein-reaction associations","degree":1,"step_ID":"step14"}
{"step":"Determine and add the confidence score","degree":2,"step_ID":"step17"}
{"step":"Add reaction information sources","degree":4,"step_ID":"step18"}
{"step":"Add spontaneous reactions","degree":1,"step_ID":"step21"}
{"step":"Add exracellular transport and periplasmic transport reactions","degree":2,"step_ID":"step22"}
{"step":"Add exchange reactions","degree":1,"step_ID":"step23"}
{"step":"Add intracellular transport reactions","degree":2,"step_ID":"step24"}
{"step":"Determine cytochemical compositions","degree":3,"step_ID":"step26"}
{"step":"Estimate amino acid contents","degree":2,"step_ID":"step27"}
{"step":"Determine amino acid coefficients","degree":3,"step_ID":"step28"}
{"step":"Estimate nucleotide contents","degree":1,"step_ID":"step29"}
{"step":"Determine nucleotide coefficients","degree":2,"step_ID":"step30"}
{"step":"Estimate lipid contents","degree":2,"step_ID":"step31"}
{"step":"Estimate cofactor contents","degree":4,"step_ID":"step32"}
{"step":"Estimate ion contents","degree":1,"step_ID":"step33"}
{"step":"Add biomass reactions","degree":2,"step_ID":"step35"}
{"step":"Determine growth medium requiremnets","degree":2,"step_ID":"step39"}
{"step":"Use COBRA","degree":1,"step_ID":"step40"}
{"step":"Load reconstructions into Matlab","degree":1,"step_ID":"step41"}
{"step":"Set objective functions","degree":3,"step_ID":"step43"}
{"step":"Identify candidate reactions to fill gaps","degree":3,"step_ID":"step48"}
{"step":"Add gap reactions to fill gaps","degree":2,"step_ID":"step49"}
{"step":"Add notes and references to terminal metabolites","degree":2,"step_ID":"step50"}
{"step":"Add missing exchange reactions","degree":2,"step_ID":"step51"}
{"step":"Recompute networks gaps","degree":3,"step_ID":"step57"}
{"step":"Obtain biomass reaction metabolites","degree":6,"step_ID":"step58"}
{"step":"Set objective functions of biomass reactions","degree":5,"step_ID":"step60"}
{"step":"Maximize objective functions","degree":4,"step_ID":"step61"}
{"step":"Identify the main reactions","degree":7,"step_ID":"step62"}
{"step":"Maximize the objective functions of the single secretion","degree":5,"step_ID":"step67"}
{"step":"Set the constraints of multiple secretions","degree":2,"step_ID":"step68"}
{"step":"Validate the model","degree":2,"step_ID":"step69"}
{"step":"Add secretion reactions","degree":2,"step_ID":"step70"}
{"step":"Simulate rich media","degree":2,"step_ID":"step73"}
{"step":"Check for blocked reactions","degree":2,"step_ID":"step74"}
{"step":"Fill gaps by blocked reactions","degree":4,"step_ID":"step75"}
{"step":"Annote gap reactions","degree":2,"step_ID":"step93"}