{"step":"Obtain genome annotation","degree":1,"step_ID":"step1"} {"step":"Identify candidate metabolic functions","degree":2,"step_ID":"step2"} {"step":"Identify candidate metabolic reactions","degree":2,"step_ID":"step3"} {"step":"Assemble draft reconstruction","degree":5,"step_ID":"step4"} {"step":"Use the phylogenetically close organisms","degree":3,"step_ID":"step5"} {"step":"Collect the experimental data","degree":2,"step_ID":"step6"} {"step":"Determine the substrates and cofactors for usage","degree":3,"step_ID":"step7"} {"step":"Determine the charged molecular formula","degree":1,"step_ID":"step9"} {"step":"Determine reaction directionality","degree":4,"step_ID":"step11"} {"step":"Add the cellular compartments information","degree":1,"step_ID":"step12"} {"step":"Verify gene-protein-reaction associations","degree":1,"step_ID":"step14"} {"step":"Determine and add the confidence score","degree":2,"step_ID":"step17"} {"step":"Add reaction information sources","degree":4,"step_ID":"step18"} {"step":"Add spontaneous reactions","degree":1,"step_ID":"step21"} {"step":"Add exracellular transport and periplasmic transport reactions","degree":2,"step_ID":"step22"} {"step":"Add exchange reactions","degree":1,"step_ID":"step23"} {"step":"Add intracellular transport reactions","degree":2,"step_ID":"step24"} {"step":"Determine cytochemical compositions","degree":3,"step_ID":"step26"} {"step":"Estimate amino acid contents","degree":2,"step_ID":"step27"} {"step":"Determine amino acid coefficients","degree":3,"step_ID":"step28"} {"step":"Estimate nucleotide contents","degree":1,"step_ID":"step29"} {"step":"Determine nucleotide coefficients","degree":2,"step_ID":"step30"} {"step":"Estimate lipid contents","degree":2,"step_ID":"step31"} {"step":"Estimate cofactor contents","degree":4,"step_ID":"step32"} {"step":"Estimate ion contents","degree":1,"step_ID":"step33"} {"step":"Add biomass reactions","degree":2,"step_ID":"step35"} {"step":"Determine growth medium requiremnets","degree":2,"step_ID":"step39"} {"step":"Use COBRA","degree":1,"step_ID":"step40"} {"step":"Load reconstructions into Matlab","degree":1,"step_ID":"step41"} {"step":"Set objective functions","degree":3,"step_ID":"step43"} {"step":"Identify candidate reactions to fill gaps","degree":3,"step_ID":"step48"} {"step":"Add gap reactions to fill gaps","degree":2,"step_ID":"step49"} {"step":"Add notes and references to terminal metabolites","degree":2,"step_ID":"step50"} {"step":"Add missing exchange reactions","degree":2,"step_ID":"step51"} {"step":"Recompute networks gaps","degree":3,"step_ID":"step57"} {"step":"Obtain biomass reaction metabolites","degree":6,"step_ID":"step58"} {"step":"Set objective functions of biomass reactions","degree":5,"step_ID":"step60"} {"step":"Maximize objective functions","degree":4,"step_ID":"step61"} {"step":"Identify the main reactions","degree":7,"step_ID":"step62"} {"step":"Maximize the objective functions of the single secretion","degree":5,"step_ID":"step67"} {"step":"Set the constraints of multiple secretions","degree":2,"step_ID":"step68"} {"step":"Validate the model","degree":2,"step_ID":"step69"} {"step":"Add secretion reactions","degree":2,"step_ID":"step70"} {"step":"Simulate rich media","degree":2,"step_ID":"step73"} {"step":"Check for blocked reactions","degree":2,"step_ID":"step74"} {"step":"Fill gaps by blocked reactions","degree":4,"step_ID":"step75"} {"step":"Annote gap reactions","degree":2,"step_ID":"step93"}